SIMILARITY SEARCH The Metric Space Approach

Pavel Zezula, Giuseppe Amato, Vlastislav Dohnal, Michal Batko

Table of Contents

Part I: Metric searching in a nutshell

- Foundations of metric space searching
- Survey of existing approaches

Part II: Metric searching in large collections

- Centralized index structures
- Approximate similarity search
- Parallel and distributed indexes

Parallel and Distributed Indexes

1. preliminaries
2. processing M -trees with parallel resources
3. scalable and distributed similarity search
4. performance trials

Parallel Computing

- Parallel system
- Multiple independent processing units
- Multiple independent storage places
- Shared dedicated communication media
- Shared data
- Example
- Processors (CPUs) share operating memory (RAM) and use a shared internal bus for communicating with the disks

Parallel Index Structures

- Exploiting parallel computing paradigm
- Speeding up the object retrieval
- Parallel evaluations
- using multiple processors at the same time
- Parallel data access
- several independent storage units
- Improving responses
- CPU and I/O costs

Parallel Search Measures

- The degree of the parallel improvement
- Speedup
- Elapsed time of a fixed job run on
- a small system (ST)
- a big system (BT)

$$
\text { speedup }=\frac{S T}{B T}
$$

- Linear speedup
- n-times bigger system yields a speedup of n

Parallel Search Measures

- Scaleup
- Elapsed time of
- a small problem run on a small system (STSP)
- a big problem run on a big system (BTBP)

$$
\text { scaleup }=\frac{S T S P}{B T B P}
$$

- Linear scaleup
- The n-times bigger problem on n-times bigger system is evaluated in the same time as needed by the original system to process the original problem size

Distributed Computing

- Parallel computing on several computers
- Independent processing and storage units
- CPUs and disks of all the participating computers
- Connected by a network
- High speed
- Large scale
- Internet, corporate LANs, etc.
- Practically unlimited resources

Distributed Index Structures

- Data stored on multiple computers
- Navigation (routing) algorithms
- Solving queries and data updates
- Network communication
- Efficiency and scalability
- Scalable and Distributed Data Structures
- Peer-to-peer networks

Scalable \& Distributed Data Structures

- Client/server paradigm
- Clients pose queries and update data
- Servers solve queries and store data
- Navigation algorithms
- Use local information
- Can be imprecise
- image adjustment technique to update local info

Distributed Index Example

SDDS Properties

- Scalability
- data migrate to new network nodes gracefully, and only when the network nodes already used are sufficiently loaded
- No hotspot
- there is no master site that must be accessed for resolving addresses of searched objects, e.g., centralized directory
- Independence
- the file access and maintenance primitives (search, insert, node split, etc.) never requires atomic updates on multiple nodes

Peer-to-Peer Data Networks

- Inherit basic principles of the SDDS
- Peers are equal in functionality
- Computers participating in the P2P network have the functionality of both the client and the server
- Additional high-availability restrictions
- Fault-tolerance
- Redundancy

Peer-to-Peer Index Example

Parallel and Distributed Indexes

1. preliminaries
2. processing M-trees with parallel resources
3. scalable and distributed similarity search
4. performance trials

Processing M-trees with parallel resources

- Parallel extension to the basic M-Tree
- To decrease both the I/O and CPU costs
- Range queries
- k-NN queries
- Restrictions
- Hierarchical dependencies between tree nodes
- Priority queue during the $k-N N$ search

M-tree: Internal Node (reminder)

- Internal node consists of an entry for each subtree
- Each entry consists of:
- Pivot: p
- Covering radius of the sub-tree: r^{c}
- Distance from p to parent pivot $p^{p}: d\left(p, p^{p}\right)$
- Pointer to sub-tree: ptr

$$
\left\langle p_{1}, r_{1}^{c}, d\left(p_{1}, p^{p}\right), p t r_{1}\right\rangle\left\langle p_{2}, r_{2}^{c}, d\left(p_{2}, p^{p}\right), p t_{2}\right\rangle \cdots\left\langle p_{m}, r_{m}^{c}, d\left(p_{m}, p^{p}\right), p t r_{m}\right\rangle
$$

- All objects in the sub-tree ptr are within the distance r^{c} from p.

M-tree: Leaf Node (reminder)

- Leaf node contains data entries
- Each entry consists of pairs:
- Object (its identifier): o
- Distance between o and its parent pivot: $d\left(o, o^{p}\right)$

$$
\begin{array}{|}
\hline\left\langle o_{1}, d\left(o_{1}, o^{p}\right)\right\rangle\left\langle o_{2}, d\left(o_{2}, o^{p}\right)\right\rangle \cdots\left\langle o_{m}, d\left(o_{m}, o^{p}\right)\right\rangle \\
\hline
\end{array}
$$

Parallel M-Tree: Lowering CPU costs

- Inner node parallel acceleration
- Node on given level cannot be accessed
- Until all its ancestors have been processed
- Up to m processors compute distances to pivots $d\left(q, p_{i}\right)$

- Leaf node parallel acceleration
- Independent distance evaluation $d\left(q, o_{i}\right)$ for all leaf objects

$$
\left\langle\left\langle_{1}, d\left(o_{1}, o^{p}\right)\right\rangle\left\langle o_{2}, d\left(o_{2}, o^{p}\right)\right\rangle \cdots\left\langle o_{m}, d\left(o_{m}, o^{p}\right)\right\rangle\right.
$$

- k-NN query priority queue
- One dedicated CPU

Parallel M-Tree: Lowering I/O costs

- Node accessed in specific order
- Determined by a specific similarity query
- Fetching nodes into main memory (I/O)
- Parallel I/O for multiple disks
- Distributing nodes among disks
- Declustering to maximize parallel fetch
- Choose disk where to place a new node (originating from a split)
- Disk with as few nodes with similar objects/regions as possible is a good candidate.

Parallel M-Tree: Declustering

- Global allocation declustering
- Only number of nodes stored on a disk taken into account
- Round robin strategy to store a new node
- Random strategy
- No data skew
- Proximity-based allocation declustering
- Proximity of nodes' regions determine allocation
- Choose the disk with the lowest sum of proximities
- between the new node region
- and all the nodes already stored on the disk

Parallel M-Tree: Efficiency

- Experimental evaluation
- Good speedup and scaleup
- Sequential components not very restrictive
- Linear speedup on CPU costs
- Adding processors linearly decreased costs
- Nearly constant scaleup
- Response time practically the same with
- a five times bigger dataset
- a five times more processors
- Limited by the number of processors

Parallel M-Tree: Object Declustering

- Declusters objects instead of nodes
- Inner M-Tree nodes remain the same
- Leaf nodes contain pointers to objects
- Objects get spread among different disks
- Similar objects are stored on different disks
- Objects accessed by a similarity query are maximally distributed among disks
- Maximum I/O parallelization
- Range query $R\left(o_{N}, d\left(o_{N}, p\right)\right)$ while inserting o_{N}
- Choose the disk for physical storage
- with the minimum number of retrieved objects

Parallel and Distributed Indexes

1. preliminaries
2. processing M-trees with parallel resources
3. scalable and distributed similarity search
4. performance trials

Distributed Similarity Search

- Metric space indexing technique
- Generalized hyper-plane partitioning
- Peer-to-Peer paradigm
- Self organizing
- Fully scalable
- No centralized components

GHT* Structure

GHT* Architecture

- Peers
- Computers connected by the network
- message passing paradigm
- request and acknowledgment messages
- Unique (network node) identifier NNID
- Issue queries
- Insert/update data
- Process data and answer queries

GHT* Architecture (cont.)

- Buckets
- Storage for data
- metric space objects
- no knowledge about internal structure
- Limited space
- Splits/merges possible
- Held by peers, multiple buckets per peer
- there can be no bucket in a peer
- identified by BID, unique within a peer

GHT* Architecture Schema

GHT* Architecture Schema (cont.)

GHT* Architecture (cont.)

- Precise location of every object
- Impossible to maintain on every peer
- Navigation needed in the network
- Address search tree (AST)
- Present in every peer
- May be imprecise
- repeating navigation in several steps
- image adjustment

GHT* Address Search Tree

- Based on Generalized Hyperplane Tree
- Binary tree
- Inner nodes
- pairs of pivots
- serial numbers
- Leaf nodes
- BID pointers to buckets
- NNID pointers to peers

GHT* Address Search Tree

GHT* Inserting Objects

- Peer 1 starts inserting an object o
- Use local AST
- Start from the root
- In every inner node:
- take right branch if

$$
d\left(p_{1}, o\right)>d\left(p_{2}, o\right)
$$

- take left branch if

$$
d\left(p_{5}, o\right) \leq d\left(p_{6}, o\right)
$$

- Repeat until a leaf node is reached

GHT* Inserting Objects (cont.)

- Peer $\mathbf{1}$ inserting the object \boldsymbol{o}
- If a BID pointer is found
- Store the object \boldsymbol{o} into the pointed bucket
- The bucket is local (stored on peer 1)

GHT* Inserting Objects (cont.)

- Peer $\mathbf{1}$ inserting the object \boldsymbol{o}
- If an NNID pointer is found
- The inserted object 0 is sent to peer 2
- Where the insertion resumes

GHT* Binary Path

- Represents an AST traversal path
- String of ones and zeros
- '0' means left branch
- '1' means right branch
- Serial numbers
- in inner nodes
- detect obsolete parts
- Traversal example:

GHT* Binary Path (cont.)

- Example of a different path

0 [2] 1 [2]

GHT* Storage Management

- Database grows as new data are inserted
- Buckets have limited capacity
- Bucket splits
- Allocate a new bucket
- Extend routing information
- choose new pivots
- Move objects

Splitting

- Bucket capacity is reached
- Allocate a new bucket
- Either a new local bucket
- or at another peer

Splitting

- Bucket capacity is reached
- Allocate a new bucket
- Either a new local bucket
- or at another peer
- Choose new pivots
- Adjust AST

Splitting

- Bucket capacity is reached
- Allocate a new bucket
- Either a new local bucket
- or at another peer
- Choose new pivots
- Adjust AST
- Inner node with pivots
- Leaf node for the new bucket
- Move objects

Pivot Choosing Algorithm

- Pivots are pre-selected during insertion
- Two objects are marked at any time
- The marked objects become pivots on split
- Heuristic to maximize the distance between pivots
- Mark the first two inserted objects
- Whenever a new object arrives
- Compute its distances from the currently marked objects
- If one of the distances is greater than the distance between marked objects

- change the marked objects

GHT* Range Search

- Peer 1 starts evaluating a query $\boldsymbol{R}(q, r)$
- Use the local AST
- Start from the root
- In each inner node:
- take right branch if

$$
d\left(p_{a}, q\right)+r>d\left(p_{b}, q\right)-r
$$

- take left branch if

$$
d\left(p_{a}, q\right)-r \leq d\left(p_{b}, q\right)+r
$$

- both branches can qualify
- Repeat until a leaf node

GHT* Range Search (cont.)

- Peer 1 evaluating the range query $\boldsymbol{R}(q, r)$
- For every BID pointer found
- Search the corresponding local bucket
- Retrieve all objects o in the bucket that satisfy

$$
d(q, o) \leq r
$$

- Any centralized similarity search method can be used

GHT* Range Search (cont.)

- Peer 1 evaluating the range query $\boldsymbol{R}(q, r)$
- For every NNID pointer found
- Continue with the search at corresponding peers

GHT* Range Search (cont.)

- Peer 1 evaluating the range query $\boldsymbol{R}(\boldsymbol{q}, r)$
- For every NNID pointer found
- Continue with the search at corresponding peers
- Build BPATH for the traversal
- Forward the message
- Destination peers consult their ASTs
- Avoid repeated computations using the BPATH
- Wait until the results are gathered from all active peers
- Merge them with results from local buckets

GHT* Nearest Neighbor Search

- Based on the range search
- Estimate the query radius
- Evaluate k-nearest neighbors query \boldsymbol{k} - $N \mathbf{N}(\boldsymbol{q})$
- Locate a bucket where \boldsymbol{q} would be inserted
- use the strategy for inserting an object
- Start a range query with radius r equal to the distance between \boldsymbol{q} and the \boldsymbol{k}-th nearest neighbor of \boldsymbol{q} in this bucket
- If the bucket contains less than \boldsymbol{k} objects, estimate r using:
- an optimistic strategy
- an pessimistic strategy
- The result of the range query contains the $k-N N$ result

GHT* k-NN Search Example

- Example $5-N N(q)$
- Use the insert strategy in the local AST

$$
\begin{aligned}
& d\left(p_{1}, q\right)>d\left(p_{2}, q\right) \\
& d\left(p_{5}, q\right) \leq d\left(p_{6}, q\right)
\end{aligned}
$$

- Until a BID pointer is found
- Continue searching at other peer whenever an NNID pointer is found
- Search in the destination bucket

GHT* k-NN Search Example (cont.)

- Example 5-NN(q)

- Retrieve five nearest neighbors of \boldsymbol{q} in the local bucket
- Set r to the distance of the fifth nearest neighbor found
- Evaluate a distributed range search $\boldsymbol{R}(\mathbf{q}, r)$
- results include at least five nearest neighbors from the local bucket
- however, some additional objects closer to \boldsymbol{q} can be found

- Get the first five nearest objects of $\boldsymbol{R}(\boldsymbol{q}, \boldsymbol{r})$

GHT* Updates and Deletions

- Updating an object
- Delete the original object
- Insert the updated version
- Deleting an object
- Locate the bucket where the object is stored
- the insert navigation algorithm is used
- Remove the object from the bucket
- The bucket occupation may become too low
- merge the bucket with another one
- update the corresponding nodes in the AST

GHT* Merging Buckets

- Remove a bucket
- Get its sibling
- either a leaf node (bucket)
- or an inner node
- Reinsert all remaining objects
- into the sibling
- multiple buckets possibly
- Remove the inner node N_{p}
- Increase the node's serial number

AST: Image Adjustment

- The AST is modified on bucket splits and merges
- Only changed peers are aware of the change (4 and 5)

AST: Image Adjustment (cont.)

- The AST is modified on bucket splits and merges
- Only changed peers are aware of the change (4 and 5)
- When other peer searches
- Forwards the query to a peer

AST: Image Adjustment (cont.)

- The AST is modified on bucket splits and merges
- Only changed peers are aware of the change (4 and 5)
- When other peer searches
- Forwards the query to a peer
- which has a different AST view
- The incomplete search is detected
- by too short BPATH
- The search evaluation resumes
- possibly forwarding the query to some other peers

AST: Image Adjustment (cont.)

- The AST is modified on bucket splits and merges
- Only changed peers are aware of the change (4 and 5)
- When other peer searches
- Forwards the query to a peer
- which has a different AST view
- The incomplete search is detected
- by too short BPATH
- The search evaluation resumes
- possibly forwarding the query to some other peers
- Image adjustment is sent back

AST: Logarithmic Replication

- The full AST on every peer is space consuming
- many pivots must be replicated at each peer
- Only a limited AST stored
- all paths to local buckets
- nothing more
- Hidden parts
- replaced by the NNIDs of the leftmost peers

AST: Logarithmic Replication (cont.)

- Result of logarithmic replication
- The partial AST
- Hidden parts
- replaced by the NNIDs of the leftmost peers

GHT* Joining P2P Network

- A new node joining the network sends "I'm here"
- Received by each active peer
- Peers add the node to their lists of available peers
- If a node is needed by a split
- Get one peer from the list
- send an activation request

- The peer sends "l'm being used"
- the other peers remove it from their lists
- The peer is "Ready to serve"

GHT* Leaving P2P Network

- Unexpected leaves not handled
- Requires replication or other fault-tolerant techniques
- Peers without storage
- Can leave without restrictions
- Peers storing some data
- Delete all stored data
- all buckets are merged
- Reinsert data back to the structure
- without offering its own storage capacity
- Better leaving/fault-tolerant is a research challenge

Parallel and Distributed Indexes

1. preliminaries
2. processing M-trees with parallel resources
3. scalable and distributed similarity search
4. performance trials

Performance Trials

- Objectives: show the performance of the distributed similarity search index structure
- The same datasets as for the centralized ones
- Comparison possible
\Rightarrow Experiments show that the response times are nearly constant

Datasets

- Trials performed on two datasets:
- VEC: 45-dimensional vectors of image color features compared by the quadratic distance measure
- STR: sentences of a Czech language corpus compared by the edit distance

Datasets: Distance Distribution

- Distribution of the distances within the datasets
- VEC: practically normal distance distribution
- STR: skewed distribution

Computing Infrastructure

- 300 Intel Pentium workstations
- Linux operating system
- available for use to university students
- Connected by a 100Mbps network
- access times approximately 5 ms
- Memory based buckets
- limited capacity - up to 1,000 objects
- Basic datasets:
- 100,000 objects
- 25 peers

Performance Trials: Measures

- Distance computations
- Number of all evaluations of the metric function
- either in the AST or in buckets
- Represent the CPU costs
- depends on the metric function complexity
- the evaluation may vary from hundreds of nanoseconds to seconds
- Accessed buckets
- Number of buckets accessed during a query evaluation
- Represents the I/O costs

Performance Trials: Measures (cont.)

- Messages sent
- Transmitted between peers using the computer network
- Represent the communication costs
- depends on the size of the sent objects

Performance Trials: Remarks

- Response times are imprecise:
- not dedicated computers
- depend on the actual load of used computers and the underlying network
- other influences
- Query objects follow the dataset distribution
- Average over 50 queries:
- different query objects
- the same selectivity (radius or number of nearest neighbors)

Performance Trials: Outline

- Performance of similarity queries
- Global costs
- CPU, I/O and communication
- similar to the centralized structures
- Parallel costs
- Comparison of range and k-nearest neighbors queries
- Data volume scalability
- Costs changes while increasing the size of the data
- Intraquery parallelism
- Interquery parallelism

Similarity Queries Global Costs

- Changing range query radius
- Result set size
- grows exponentially
- Buckets accessed (I/O costs)
- grows practically linearly
- Similar to centralized structures
- Peers accessed
- Only slight increase
- more buckets accessed per peer

Similarity Queries Global Costs

- Changing k for $k-N N$ queries
- logarithmic scale
- Buckets accessed
- grows very quickly as k increases
- k - $N N$ is very expensive
- similar to centralized structures
- Peers accessed
- follows the number of buckets
- practically all buckets per peer are accessed for higher values of k

Similarity Queries Global Costs

- Changing range query radius
- Distance computations (CPU costs)
- Divided for AST and buckets
- small percentage of distance comp. during the AST navigation
- Buckets use linear scan
- all objects must be accessed
- no additional pruning technique used
- Similar to centralized structures

Similarity Queries Global Costs

- Changing k for $k-N N$ queries
- logarithmic scale
- Distance computations
- only a small percentage of distance computations during the AST navigation is needed
- k-NN very expensive
- also with respect to the CPU costs

Similarity Queries Global Costs

- Changing range query radius
- Number of messages (Communication costs)
- Divided for requests and forwards
- Forward messages means misaddressing
- Only 10% messages forwarded
- even though logarithmic replication used
- No communication in centralized structures

Similarity Queries Global Costs

- Changing k for $k-N N$ queries
- logarithmic scale
- Number of messages
- very small number of messages forwarded
- corresponds with the number of peers accessed
- practically all peers accessed for k greater than 100
- Slightly higher than for range queries

Similarity Queries Global Costs

- GHT^{*} is comparable to centralized structures
- No pruning techniques in buckets
- slightly increased number of distance computations
- Buckets accessed on peers
- not fixed size of blocks, but fixed bucket capacity
- Trends are similar
- Costs increase linearly

Similarity Queries Parallel Costs

- Correspond to the actual response times
- More difficult to measure
- Maximum of the serial costs from all accessed peers
- Example: the parallel distance comp. of a range query
- number of distance computations at each peer accessed
- at a peer, it is a sum of costs for accessed buckets
- maximum of the values needed on active peers
- $k-N N$ has the serial phase of locating the first bucket
- we must sum the first part with the range query costs
- additional serial iterations may be required if optimistic/pessimistic strategy is used

Similarity Queries Parallel Costs

- Changing range query radius
- Parallel buckets accessed (I/O costs)
- Maximal number of buckets accessed per peer
- It is bounded by the capacity
- a peer has at most five buckets
- Not affected by the query size

Similarity Queries Parallel Costs

- Changing k for $k-N N$ queries
- logarithmic scale
- Iterations
- one additional optimistic strategy iteration for k greater than 1,000
- Parallel bucket access costs
- bounded by the capacity
- practically all 5 buckets per peer are always accessed
- second iteration increases the costs

Similarity Queries Parallel Costs

- Changing the range query radius - Parallel distance computations (CPU costs)
- Maximal number of distance computations per peer
- the costs of the linear scans of the peer's accessed buckets
- It is bounded by the capacity
- a peer has maximally five buckets of maximally 1,000 objects
- Good response even for large radii

Similarity Queries Parallel Costs

- Changing k for $k-N N$ queries
- logarithmic scale
- Parallel distance computations
- bounded by the capacity
- maximally 5,000 distance computations per peer

- all objects per peer are evaluated
- Second iteration ($k>1,000$)
- Increases the cost
- Although k-NN query is expensive, the CPU costs are bounded

Similarity Queries Parallel Costs

- Measure for the messages sent (the communication costs)
- during the query execution, the peer may send messages to several other peers
- the cost is equal to sending only one, because the peer sends them all at once
- the serial part is thus the forwarding
- The number of peers sequentially contacted
- hop count

Similarity Queries Parallel Costs

- Changing range query radius
- Hop count (Communication costs)
- logarithmically proportional to the number of peers accessed
- in practice, this cost is very hard to notice
- forwarding is executed before the local buckets scan

Similarity Queries Parallel Costs

- Changing k for $k-N N$ queries
- logarithmic scale
- Hop count
- Since only few messages are forwarded, the $k-N N$ queries have practically the same costs as the range queries
- Small amount of additional hops during the second phase
- approximately one additional hop is needed

Similarity Queries Comparison

- $k-N N$ and range queries

- logarithmic scale
- range query has the radius set to the distance of the k-th nearest object
- that is the perfect estimate
- Total distance computations
- the $k-N N$ query is slightly more expensive than the range query
- Parallel distance computations
- clearly visible differences of the first phase and additional iteration(s)

Similarity Queries Parallel Costs

- GHT* real costs summary
- the real response of the indexing system
- GHT* exhibits
- constant parallel CPU costs
- distance computations bounded by bucket capacity
- Constant parallel I/O costs
- number of buckets accessed bounded by peer capacity
- Logarithmic parallel communication costs
- even with the logarithmic replication

Data volume scalability

- Dataset gradually expanded to $1,000,000$ objects
- measurements after every increment of 2,000 objects
- Intraquery parallelism
- parallel response of a query measured in distance comp.
- maximum of costs incurred at peers involved in the query
- Interquery parallelism
- simplified by the ratio of the number of peers involved in a query to the total number of peers
- the lower the ratio, the higher the chances for other queries to be executed in parallel

Data volume scalability

- Changing dataset size
- two different query radii
- Intraquery parallelism
- Practically constant responses
- even for the growing dataset
- some irregularities for small datasets observed
- Larger radii result in higher costs
- though, not much

Data volume scalability

- Changing dataset size
- two different k for $k-N N$
- corresponding range queries
- Intraquery parallelism
- by analogy to range queries the responses are nearly constant
- There is a small difference for different values of k

Data volume scalability

- Changing dataset size
- Two different query radii
- Interquery parallelism
- As the size of the dataset increases, the interquery parallelism gets better
- Better for the smaller radii
- smaller percentage of peers involved in a query

Data volume scalability

- GHT* scalability for one query
- Intraquery parallelism
- both the AST navigation and the bucket search
- Remains practically constant for growing datasets
- GHT* scalability for multiple queries
- Interquery parallelism
- a simplification by percentage of used peers
- Allows more queries executed at the same time as the dataset grows

